top of page



25 / μMap photoproximity labeling enables small molecule binding site mapping

S. W. Huth​, J. V. Oakley, C. P. Seath, J. B. Geri, A. D. Trowbridge, D. L. Parker Jr., F. P. Rodriguez-Rivera, A. G. Schwaid, C. Ramil, K. Ah Ryu, C. H. White, O. O. Fadeyi, R. C. Oslund and D. W. C. MacMillan* J. Am. Chem. Soc  2023,


24 / Proximity labelling to study chromatin interactomes

C. P. Seath Nature Reviews Cancer 2023, 10.1038/s41568-023-00596-0


22 / Photoproximity Labeling of Sialylated Glycoproteins (GlycoMap) Reveals Sialylation-Dependent Regulation of Ion Transport


21 / Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform

Oakley, J. V.; Buksh, B. F.; Fernández, D. F.; Oblinsky, D. G.; Seath, C. P.; Geri, J. B.; Scholes, G. D.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. 2022, 119, e2203027119


20 / μMap-Red: Proximity Labeling by Red Light Photocatalysis.

Buksh B. F.; Knutson, S. D.; Oakley, J. V.; Bissonnette, N. B.; Oblinsky, D. G.; Schwoerer, M. P.; Seath, C. P.; Geri, J. G.; Rodriguez-Rivera, F. P.; Parker. D. L.; Scholes, G. D.; Ploss, A.;  MacMillan. D. W. C. J. Am. Chem. Soc.  2022, 144, 6154


19 / Tracking chromatin state changes using µMap photo-proximity labeling.

Seath, C. P.*; Burton, A. J.*; MacMillan, D. W. C.; Muir, T. W.  BioRxiv.

18 / Small molecule photocatalysis enables drug target identification via energy transfer

Trowbridge, A. D.*; Seath, C. P.*; Rodriguez-Rivera, F. P.*; Li, B. X.; Dul, B. E.; Schwaid, A. G.; Geri, J. B.; Oakley, J. V.; Fadeyi, O. O.; Oslund, R. C.; Ryu, K. A.; White, C.; Reyes-Robles, T.; Tawa, P.; Parker Jr., D. L.; MacMillan D. W. C.  PNAS, 2022, Accepted.

17 / Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis.

Chan, A.; Perry, I.; Bissonnette, N.; Buksh, B. F.; Edwards, G.; Frye, L.; Garry, O.; Lavagnino, M.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N.; Sakai, H.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. Accepted.


16 / Reactive intermediates for interactome mapping.

Seath, C. P.; Trowbridge, A. D.; Muir, T. W.; MacMillan, D. W. C. Chem. Soc. Rev. 2021, 50, 2911–2926.

15 / Selective C-F Functionalization of Unactivated Trifluoromethylarenes.

Vogt, D. B.; Seath, C. P.; Wang, H; Jui, N. T.  J. Am. Chem. Soc. 2019 141, 13203-13211.

14 / Photocatalytic Approaches Towards Radical Pyridine Alkylation

Seath, C. P.; Jui, N. T. Synlett (SynPACT), 2019, 30, A-H.


13 / A Catalytic Strategy for Regioselective Arylethylamine Synthesis.

Boyington, A. J.; Seath, C. P.; Zearfoss, A. M.; Xu, Z.; Jui, N. T.  J. Am. Chem. Soc. 2019, 141, 4147-4153.

12 / Radical Hydroarylation of Functionalized Olefins and Mechanistic Investigation of Photocatalytic Pyridyl Radical Reactions.

Seath, C. P.; Vogt, D. B.; Xu, Z.; Boyington, A. J.; Jui, N. T.  J. Am. Chem. Soc. 2018, 140, 15525–15534.

11 / Interrogating Pd(II) Anion Metathesis Using a Bifunctional Chemical Probe: A Transmetalation Switch.

Molloy, J. J.; Seath, C. P.; West, M. J.; McLaughlin, C.; Fazakerley, N. J.; Kennedy, A. J.; Nelson, D. J.; Watson, A. J. B. J. Am. Chem. Soc. 2018, 140, 126−130.


10 / A One-pot Tandem Chemoselective Allylation/Cross-coupling via Temperature Control of a Multi-nucleophile/electrophile System.

Xu, C.; Fyfe, J. W. B; Seath, C. P.; Bennett, S. H.;† Watson, A. J. B. Chem. Commun. 2017, 53, 9139–9142.

9/ Chemoselective Sequential Control of CuAAC Ligations Using Aromatic Ynamine Protecting Groups.

Hatit, M. Z. C.; Seath, C. P.; Watson, A. J. B.; Burley, G. A. J. Org. Chem. 2017, 82, 5461–5468.

8 / Determining the Origin of Rate-Independent Chemoselectivity in CuAAC Reactions: An Alkyne-Specific Shift in Rate-Determining Step.

Seath, C. P.; Burley, G. A.; Watson, A. J. B. Angew. Chem. Int. Ed. 2017, 56, 3314–3318.


7 / Synthesis of Oxindoles and Benzofuranones via Oxidation of 2-Heterocyclic BMIDA.

Seath C. P.; Fyfe, J. W. B.; Molloy, J. J.; Watson, A. J. B. Synthesis 2017, 49, 891–898.

6 / Chemoselective Sequential Click Ligations Directed by Enhanced Reactivity of an Aromatic Ynamine.

Hatit, M. Z. C.; Sadler, J. C.;McLean, L. A.; Whitehurst, B. C.; Seath, C. P.; Humphreys, L. D.; Young, R. J.; Watson, A. J. B.; Burley, G. A. Org. Lett. 2016, 18, 1694–1697.

5 / Synthesis of 2-BMIDA 6,5-Bicyclic Heterocycles by Cu(I)/Pd(0)/Cu(II) Cascade Catalysis of 2-Iodoanilines/phenols.

Seath, C. P.; Wilson, K. L.; Campbell, A.; Mowat, J. M.; Watson, A. J. B. Chem. Commun. 2016, 52, 8703–8706.


4 / Tandem Chemoselective Suzuki-Miyaura Cross-coupling Enabled by Nucleophile Speciation Control.

Seath, C. P.; Fyfe, J. W. B.; Molloy, J. J.; Watson, A. J. B. Angew. Chem. Int. Ed. 2015, 54, 9976–9979.

3 / Speciation Control During Suzuki-Miyaura Cross-Coupling of Haloaryl and Haloalkenyl MIDA Boronic Esters.

Fyfe, J. W. B.; Valverde, E.; Seath, C. P.; Redmond, J. M.; Anderson, N; Watson, A. J. B. Chem.-Eur. J. 2015, 24, 8951–8964.

2 / A Modular Synthesis of Functionalized Phenols Enabled by Controlled Boron Speciation.

Molloy, J. J.; Law, R. P.; Fyfe, J. W. B.; Seath, C. P.; Hirst, D. J.; Watson, A. J. B. Org. Biomol. Chem. 2015, 13, 3093–3102.


1 / Chemoselective Boronic Ester Synthesis by Controlled Speciation.

Fyfe, J. W. B.; Seath, C. P.; Watson, A. J. B. Angew. Chem. Int. Ed. 2014, 53, 12077–12080.


bottom of page